24 research outputs found

    A pilot investigation of load-carrying on the head and bone mineral density in premenopausal, black African women

    Get PDF
    Although the influence of weight bearing activity on bone mass has been widely investigated in white women, few studies have been conducted in black, African populations. We investigated bone mineral density (BMD) in black South African women, with and without a history of load-carrying on the head. We also investigated whether load carrying may offer protection against low BMD in users of injectable progestin contraception (IPC). Participants were 32 black, South African women (22.4±3.2 yrs). Load carrying history was determined by questionnaire and interview and participants were grouped as load carriers (LC; n=18) or non load carriers (NLC; n=14). Ten women were using IPC and 6 were load-carriers. Total body (TB), lumbar spine (LS) and total hip (H) BMD were measured by dual energy X-ray absorptiometry. There were no differences in BMD between LC and NLC, and after controlling for age and BMI using two-tailed partial correlations. IPC users had lower BMD at all sites compared to non IPC users (p<0.05) and there were no associations between load carrying and BMD in this group. When IPC users were excluded from analysis, LC had higher LS BMD than NLC (p<0.005). Correlations were found between the weight of load carried and LS BMD (r=0.743, p<0.005), and between years of load carrying and LS and TB BMD (r=0.563, r=0.538 respectively; both p<0.05). Load carrying on the head may offer osteogenic benefits to the spine but these benefits did not appear in women using IPC

    Improving asthma during pregnancy with dietary antioxidants: the current evidence

    Get PDF
    The complication of asthma during pregnancy is associated with a number of poor outcomes for the mother and fetus. This may be partially driven by increased oxidative stress induced by the combination of asthma and pregnancy. Asthma is a chronic inflammatory disease of the airways associated with systemic inflammation and oxidative stress, which contributes to worsening asthma symptoms. Pregnancy alone also intensifies oxidative stress through the systemic generation of excess reactive oxidative species (ROS). Antioxidants combat the damaging effects of ROS; yet antioxidant defenses are reduced in asthma. Diet and nutrition have been postulated as potential factors to combat the damaging effects of asthma. In particular, dietary antioxidants may play a role in alleviating the heightened oxidative stress in asthma. Although there are some observational and interventional studies that have shown protective effects of antioxidants in asthma, assessment of antioxidants in pregnancy are limited and there are no antioxidant intervention studies in asthmatic pregnancies on asthma outcomes. The aims of this paper are to (i) review the relationships between oxidative stress and dietary antioxidants in adults with asthma and asthma during pregnancy, and (ii) provide the rationale for which dietary management strategies, specifically increased dietary antioxidants, might positively impact maternal asthma outcomes. Improving asthma control through a holistic antioxidant dietary approach might be valuable in reducing asthma exacerbations and improving asthma management during pregnancy, subsequently impacting perinatal health.Jessica A. Grieger, Lisa G. Wood and Vicki L. Clifto

    Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases

    Get PDF
    Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination 'as a public health problem' when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models' predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020

    Glutathione and NADH, but not ascorbate, protect lens proteins from modification by UV filters

    No full text
    Age-dependent human lens colouration and fluorescence may stem primarily from the covalent binding of UV filters to crystallins. The tendency of the kynurenine (Kyn) UV filters to deaminate at neutral pH, with the generation of reactive α,β-ketoalkenes, underlies this phenomenon. In this study the authors examined the ability of small molecular weight antioxidants, which are known to be present in the lens, to inhibit this process. Crystallins were incubated with Kyn at pH 7 in the presence of glutathione (GSH), ascorbate or NADH. Ascorbate, even at high (15mΜ) levels, was not found to significantly retard the time-dependent covalent binding of Kyn to the proteins. GSH, and to a lesser extent NADH, however, had a major impact in preventing this modification. The increase in protein UV absorbance and fluorescence was inhibited by GSH intercepting the reactive ketone intermediate, to form a GSH–Kyn adduct. NADH seemed to protect by both reduction of the reactive ketone intermediate and by competing with Kyn for presumably hydrophobic sites on the crystallins. This may indicate that the covalent attachment of aromatic Kyn molecules could be facilitated by initial hydrophobic interactions. Since GSH is present at far greater concentrations than NADH, these results show that in primate lenses, GSH is the key agent responsible for protecting the crystallins from covalent modification.9 page(s

    UV filter instability : consequences for the human lens

    No full text
    Human lenses appear to become coloured with age primarily due to the covalent binding of UV filter compounds to lens proteins. These crystallin modifications result from the inherent instability of the kynurenine UV filters. Here we investigate this decomposition, the role this may have in the formation of other primate UV filters, and the interaction of the intermediates (α,β-ketoalkenes) with lens components. The UV filters kynurenine, 3-hydroxykynurenine and 3-hydroxykynurenine glucoside were incubated at neutral pH in the presence or absence of NADH or NADPH. The three UV filters underwent spontaneous deamination, such that at pH 7 less than half of the starting materials (kynurenine (42%), 3-hydroxykynurenine glucoside (30%) and 3-hydroxykynurenine (21%)) remained after 7 days. In the presence of NAD(P)H, the double bond of the UV filter-derived deamination compounds, were reduced. Deamination of 3-hydroxykynurenine glucoside, followed by reduction with NAD(P)H, could thus account for the formation of the major lens UV filter 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid glucoside. β-Benzoylacrylic acid, which possesses the same α,β-ketoalkene sidechain as the deaminated kynurenine UV filters, underwent Michael addition with glutathione, was reduced (hydrogenated) by NAD(P)H, however was unreactive with ascorbate. Surprisingly, at pH 7 the UV filter-derived α,β-ketoalkene intermediates, do not readily undergo intramolecular cyclization. This feature makes the double bond more available for reaction with protein nucleophilic residues and other lens components such as glutathione. On the basis of these data it is likely that glutathione and NAD(P)H, but not ascorbate, protect proteins in the lens from modification by UV filters11 page(s

    Major changes in human ocular UV protection with age

    No full text
    Purpose: Age-dependent human lens coloration may be explained by the binding of UV filters to crystallins. It has been proposed that glutathione may compete for reaction with UV filter degradation products and therefore protect crystallins from modification. To understand this process, UV filters were quantified together with oxidized and reduced glutathione in human lenses of varying age. Methods: Lens tissues were homogenized in ethanol to extract the UV filters. Metabolites were quantified by HPLC and correlations between them in the nuclear and cortical regions of the lens were examined. Results: The concentrations of the UV filters 3-hydroxykynurenine, kynurenine, and 3-hydroxykynurenine glucoside decreased linearly with age, with slightly lower levels in the nucleus than the cortex. 4-(2-Amino-3-hydroxyphenyl)-4-oxobutanoic acid glucoside was found in higher levels in the nucleus than the cortex and decreased slowly in both regions with age. Glutathionyl-3-hydroxykynurenine glucoside was present in higher concentrations in the nucleus, barely detectable in young lenses, but increased significantly after age 50. Reduced glutathione levels were lower in the nucleus and decreased in both regions with age, yet oxidized glutathione increased in the nucleus but remained constant in the cortex. Conclusions: Results are consistent with a predominantly nuclear origin for both 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid glucoside and glutathionyl-3-hydroxykynurenine glucoside. This is in accord with their proposed mechanism of formation, which involves an initial deamination of 3-hydroxykynurenine glucoside. This process is more pronounced in older lenses, possibly because of the barrier to diffusion. The barrier may also explain the increase in nuclear oxidized glutathione that is observed with age.6 page(s
    corecore